Option Pricing Under a Double Exponential Jump Diffusion Model

نویسندگان

  • Steven Kou
  • Hui Wang
چکیده

Analytical tractability is one of the challenges faced by many alternative models that try to generalize the Black-Scholes option pricing model to incorporate more empirical features. The aim of this paper is to extend the analytical tractability of the BlackScholes model to alternative models with jumps. We demonstrate a double exponential jump diffusion model can lead to an analytic approximation for Þnite horizon American options (by extending the Barone-Adesi and Whaley method) and analytical solutions for popular path-dependent options (such as lookback, barrier, and perpetual American options). Numerical examples indicate that the formulae are easy to be implemented and accurate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Option Pricing on Commodity Prices Using Jump Diffusion Models

In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...

متن کامل

Closed formulas for the price and sensitivities of European options under a double exponential jump diffusion model

We derive closed formulas for the prices of European options andtheir sensitivities when the underlying asset follows a double-exponentialjump diffusion model, as considered by S. Kou in 2002. This author hasderived the option price by making use of double series where each termrequires the computation of a sequence of special functions, such thatthe implementation remains difficult for a large...

متن کامل

Option pricing under the double stochastic volatility with double jump model

In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...

متن کامل

Pricing and Hedging of Quantile Options in a Flexible Jump Diffusion Model

This paper proposes a Laplace-transform-based approach to price the fixed-strike quantile options as well as to calculate the associated hedging parameters (delta and gamma) under a hyperexponential jump diffusion model, which can be viewed as a generalization of the well-known Black–Scholes model and Kou’s double exponential jump diffusion model. By establishing a relationship between floating...

متن کامل

Pricing of Futures Contracts by Considering Stochastic Exponential Jump Domain of Spot Price

Derivatives are alternative financial instruments which extend traders opportunities to achieve some financial goals. They are risk management instruments that are related to a data in the future, and also they react to uncertain prices. Study on pricing futures can provide useful tools to understand the stochastic behavior of prices to manage the risk of price volatility. Thus, this study eval...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Management Science

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2004